Quality assurance for Duchenne and Becker muscular dystrophy genetic testing: development of a genomic DNA reference material panel.
نویسندگان
چکیده
Duchenne and Becker muscular dystrophies (DMD/BMD) are allelic X-linked recessive disorders that affect approximately 1 in 3500 and 1 in 20,000 male individuals, respectively. Approximately 65% of patients with DMD have deletions, 7% to 10% have duplications, and 25% to 30% have point mutations in one or more of the 79 exons of the dystrophin gene. Most clinical genetics laboratories test for deletions, and some use technologies that can detect smaller mutations and duplications. Reference and quality control materials for DMD/BMD diagnostic and carrier genetic testing are not commercially available. To help address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing and the DMD/BMD patient communities and the Coriell Cell Repositories, have characterized new and existing cell lines to create a comprehensive DMD/BMD reference material panel. Samples from 31 Coriell DMD cell lines from male probands and female carriers were analyzed using the Affymetrix SNP Array 6.0 and Multiplex Ligation-Dependent Probe Amplification (MRC-Holland BV, Amsterdam, the Netherlands), a multiplex PCR assay, and DNA sequence analysis. Identified were 16 cell lines with deletions, 9 with duplications, and 4 with point mutations distributed throughout the dystrophin gene. There were no discordant results within assay limitations. These samples are publicly available from Coriell Institute for Medical Research (Camden, NJ) and can be used for quality assurance, proficiency testing, test development, and research, and should help improve the accuracy of DMD testing.
منابع مشابه
Development of a genomic DNA reference material panel for myotonic dystrophy type 1 (DM1) genetic testing.
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not...
متن کاملA Streamlined Protocol for Molecular Testing of the DMD Gene within a Diagnostic Laboratory: A Combination of Array Comparative Genomic Hybridization and Bidirectional Sequence Analysis
Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD ...
متن کاملThe Diagnostic Value of Utrophin in Mild Dystrophinopathy (Becker Muscular Dystrophy)
Background and Objective: Becker Muscular Dystrophy (BMD) is a subtype of dystrophinopathies and designated as “mild form of dystrophinopathy”. The frequency rate of the disease is 1:18000 to 1:30000 in different populations and the symptoms are presented at about 8-9 years of age. The diagnostic panel composed of Serum Ceratin Kinase (SCK) measurement, Electromyography (EMG), and as a major...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملDetection of Heterozygotes for Intragenic Deletions in Families with Recurrence of Duchenne or Becker Muscular Dystrophy
More than 60% of Duchenne/Becker muscular dystrophy (DMD/BMD) cases is due to deletions in the dystrophin gene, therefore the large majority of female carriers is heterozygote for an intragenic deletion. A new protocol is presented here for detection of these heterozygotes, based on multiplex semi-quantitative PCR amplification of genomic DNA. The method is non-radioactive, fast and easy to per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of molecular diagnostics : JMD
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2011